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Abstract. The electron spectrum structure in the half-filled Hubbard model is considered in terms of the
one-particle Green’s functions within many-electron representation. A simple analytical generalization of
the single-site Hubbard-III approximation is obtained, which takes into account the Fermi excitations
(Kondo terms). The problem of the metal-insulator transition in the paramagnetic phase is investigated.
The occurrence of a three-peak density-of-states structure including the “Kondo” peak at the Fermi level
is discussed. A comparison with large-d calculations is performed.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.27.+a Strongly correlated electron
systems; heavy fermions – 71.30.+h Metal-insulator transitions and other electronic transitions

1 Introduction

The problem of strong correlations in many-electron sys-
tems is one of the most important in the solid state the-
ory. The simplest model to describe correlation effects
is the Hubbard model [1] which includes the on-site
Coulomb interaction. One of most interesting phenom-
ena is the correlation-driven metal-insulator transition
(MIT), which takes place in a number of transition metal
compounds. A simple description of MIT was given by
Hubbard [2] who started from the atomic-level picture and
proposed a simple interpolation self-consistent scheme.

Since the Hubbard works of 60’s, a great progress
has been achieved in understanding electronic struc-
ture of highly-correlated systems. Previously, the role of
the Kondo effect has been discussed within the large-d
approach (d is space dimensionality) which reduces the
original periodic Hubbard model to an effective Anderson
impurity model [3–5]. Such an approach (dynamical mean-
field theory, DMFT) turned out to be rather successful.
The corresponding density of states (DOS) has three-peak
rather than two-peak structure: an additional “Kondo”
quasiparticle resonance at the Fermi level occurs owing
to scattering by the local moment. The spectrum struc-
ture in large-d approaches is confirmed by the quan-
tum Monte-Carlo (QMC) calculations (see, e.g., Ref. [6])
and some spectroscopic experimental results. Unfortu-
nately, there exist some difficulties in numerical calcula-
tions within QMC and large-d approaches, so that one
needs often to introduce rather high temperatures to re-
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solve these problems. The three-peak structure is not re-
produced by most preceding analytical approaches, in par-
ticular, by the single-site Hubbard-III approximation [2],
the reason being in that they do not take into account
contributions of Fermi-like excitations in a proper way.
Thus these approaches do not describe the Brinkman-Rice
effective-mass enhancement which is important from the
experimental point of view. Recently, an attempt has been
made to improve the Hubbard-III approximation by calcu-
lating corrections owing to correlation effects [7]; however,
the results remained qualitatively unchanged.

A detailed analysis of Hubbard-III-like approximations
was performed in references [8,9] within the large-z ex-
pansion, z being the nearest-neighbor number. In the zero
order this approach reduces to the simplest Hubbard-I ap-
proximation [1]. General expressions for 1/z-corrections
in the limit U → ∞ were obtained in reference [8]. The
problem of MIT within this approach was treated in ref-
erence [9]. Unfortunately, only a classical approximation
(the large-S limit of the s-d model which generalizes
the Hubbard model) was considered, and the terms with
the one-particle occupation numbers, which just describe
the Kondo effect in narrow bands [10], were neglected.

In the present paper we present a treatment that is
based on the method of equations of motion for the many-
electron Hubbard operators [11,12] and is a much more
simple than the large-d approach. In Section 2, the de-
coupling scheme with account of the Fermi excitations is
developed. In Section 3, we present the results of numeri-
cal calculations and carry out a comparison with previous
works.
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2 The decoupling scheme

We consider the Hubbard model with the electron con-
centration n = 1 (the half-filled case) in the paramagnetic
state. The corresponding Hamiltonian reads

H =
∑
kσ

tkc†kσckσ + U
∑

i

ni↑ni↓, (1)

where niσ = c†iσciσ, c†iσ and c†kσ are the one-electron oper-
ators in the Wannier and quasimomentum representation.
We pass to the Hubbard X-operators

Xαβ
i = |iα〉〈iβ|, Xαβ

i Xγε
i = δβγXαε

i ,
∑

α

Xαα
i = 1,

(2)
so that

c†iσ =
∑
α,β

〈iα|c†iσ |iβ〉Xαβ
i = Xσ0

i + σX2−σ
i . (3)

Then the interaction Hamiltonian takes a diagonal form
and we obtain

H =
∑
kσ

tk(Xσ0
−k + σX2−σ

−k )(X0σ
k + σX−σ2

k ) + U
∑

i

X22
i .

(4)
Using (3) we have for the one-electron anticommutator
retarded Green’s function

Gkσ(E) = 〈〈ckσ|c†kσ〉〉E

= 〈〈X0σ
k |c†kσ〉〉E + σ〈〈X−σ2

k |c†kσ〉〉E . (5)

The energy E is supposed to be referred to the chemical
potential which equals U/2 in our case. We write down
the system of equation of motion

E〈〈A|B〉〉E = 〈{A, B}〉 + 〈〈[A,H]|B〉〉E
for the pair of the Green’s functions in the right-hand side
of (5). Using (2) we obtain in the non-magnetic case

(E + U/2)〈〈X0σ
k |c†kσ〉〉E =

1
2
(1 + tk〈〈ckσ|c†kσ〉〉E)

+
∑
q

tq〈〈(δ(X00
k−q) + δ(Xσσ

k−q))cqσ|c†kσ〉〉E

+
∑
q

tq〈〈X−σσ
k−q cq−σ + σc†q−σX02

k+q|c†kσ〉〉E , (6)

σ(E − U/2)〈〈X−σ2
k |c†kσ〉〉E =

1
2
(1 + tk〈〈ckσ|c†kσ〉〉E)

+
∑
q

tq〈〈(δ(X−σ−σ
k−q ) + δ(X22

k−q))cqσ|c†kσ〉〉E

−
∑
q

tq〈〈X−σσ
k−q cq−σ + σc†q−σX02

k+q|c†kσ〉〉E , (7)

where δA = A − 〈A〉 is the fluctuation of the operator.
Solving the system (6), (7) we derive

Gkσ(E) = G0
k(E)(1 − U

E
Γkσ(E)), (8)

Γkσ(E) =
∑
q

tq〈〈δ(X00
k−q + Xσσ

k−q)cqσ

+ X−σσ
k−q cq−σ + σc†q−σX02

k+q|c†kσ〉〉E . (9)

Here

G0
k(E) =

1
F0(E) − tk

, F0(E) = E − U2

4E
(10)

is the Green’s function of the Hubbard-I approximation
(which plays the role of a mean-filed approximation for
our problem), F0(E) being the corresponding inverse lo-
cator. The Hubbard-I spectrum contains two correlation
subbands defined by the poles of (10)

Ek1, 2 =
1
2
(tk ± εk), εk =

√
U2 + t2k.

The Green’s function Γkσ(E) describes fluctuation cor-
rections. The corresponding collective excitations are de-
scribed by spin and charge operators.

Sσ
q = Xσ−σ

q , Sz
q =

1
2
(X++

q − X−−
q ),

ρ+
q = X20

q , ρz
q =

1
2
(X22

q − X00
q ).

Now we write down the system of equations for the fluc-
tuation Green’s functions and perform the decouplings
which correspond to the first order in the formal param-
eter 1/z (strictly speaking, this expansion is justified in
the case of long-range electron hopping). For the half-
filled band, we have to take into account particle and
hole excitations in an equal way. However, decouplings
can violate the particle-hole symmetry. To preserve this
symmetry, we make an identical transformation by taking
in (9) the Green’s functions with symmetrized operator
products, e.g.,

〈〈X−σσ
k−q cq−σ|c†kσ〉〉E → 1

2
〈〈{X−σσ

k−q , cq−σ}|c†kσ〉〉E =

1
2
〈〈X−σσ

k−q cq−σ + cq−σX−σσ
k−q |c†kσ〉〉E .

We also use in the equations of motion the Hamiltonian
in the symmetrized form,

tkc†kσckσ → 1
2
tk(c†kσckσ − ckσc†kσ).
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Then we obtain for the transverse spin fluctuation
contribution

(E2 − U2/4 − Etq)〈〈1
2
{X−σσ

k−q , cq−σ}|c†kσ〉〉E =

(E + U/2)(tq − tk)(fq − 1
2
)Gkσ(E)

− U(tk〈X−σσ
k−qXσ−σ

−k+q〉 + (tq − tk)〈1
2
[X−σ0

−q , X0−σ
q ]

− σX2σ
−qX0−σ

q 〉Gkσ(E) − (E + U/2)(fq − 1
2
)

+ U〈1
2
[X−σ0

−q , X0−σ
q ] − σX2σ

−qX0−σ
q − X−σσ

k−qXσ−σ
−k+q〉.

Note that, as well as the standard Kondo terms, the
“many-electron” terms come from the spin-flip processes,
but not from longitudinal spin fluctuations. For the
“transverse” charge contribution we have

σ(E2 − U2/4 − Etq)〈〈1
2
{c†q−σX02

k+q}| c†kσ〉〉E =

(E + U/2)(tq + tk)(fq − 1
2
)Gkσ(E)

+ U(tk〈X20
−k−qX02

k+q〉 + (tq + tk)〈σX2σ
−qX0−σ

q

+
1
2
[X2σ

−q, Xσ2
q ]〉)Gkσ(E) + (E + U/2)(fq − 1

2
)

− U〈1
2
[X2σ

−q, Xσ2
q ] − σX2σ

−qX0−σ
q − X20

−k−qX02
k+q〉.

A symmetry of spin and charge degrees of freedom occurs
for a symmetric conduction band.

Further we neglect q-dependence of spin and charge
correlations functions and replace them by single-site av-
erages, so that

〈Sσ
−qS−σ

q 〉 = 2〈Sz
−qSz

q〉 = 〈Xσσ〉,
〈ρσ

−qρ−σ
q 〉 = 2〈ρz

−qρz
q〉 = 〈X22〉 = 〈X00〉. (11)

Such an approximation is made (although as a rule im-
plicitly) in practically all works on the MIT problem.
This corresponds to neglecting dynamics of low-energy
Bose excitations and may be justified not only in high-
temperature limit, but also within the 1/z-expansion. For
the local-spin subsystem, this approximation is in spirit
of the mean-field theory. The main part of charge dynam-
ics (the Hubbard splitting U) is also already taken into
account in the zero-order (Hubbard-I) approximation. A
consistent consideration of dynamics is rather difficult and
can be made in higher orders in 1/z. This may lead to a
change in details of the MIT picture. Roughly speaking,
we work above the magnetic ordering temperature. The
latter quantity is always small in comparison with the
bandwidth and Hubbard parameter U , and is known to
be low (of order of 10 ÷ 100 K) in most transition-metal
compounds of interest.

Taking into account (11) we can use the sum rule in (2)
to obtain

Gk(E) =
a(E)

b(E) − a(E)tk
=

1
F (E) − tk

,

F (E) =
b(E)
a(E)

, (12)

a(E) = 1 +
3
4

U2

E2

∑
q

tq
1

F0(E) − tq

+
2U

E

∑
q

tq
fq

F0(E) − tq
, (13a)

b(E) = F0(E) +
2U

E

∑
q

t2q
fq

F0(E) − tq
. (13b)

We have substituted here the one-particle correlation func-
tions in the Hubbard-I approximation,

〈c†qσX0σ
q 〉 =

1
2εq

[(Eq1 − U)f(Eq1)

−(Eq2 − U)f(Eq2)],

〈c†qσX−σ2
q 〉 =

−σ

2εq
[Eq1f(Eq1) − Eq2f(Eq2)],

fq ≡ 〈c†qσcqσ〉 =
1
εq

[(Eq1 − U/2)f(Eq1)

−(Eq2 − U/2)f(Eq2)].

Due to the symmetry of the bare band, we have∑
q

f(Eq,2)Φ(tq) =
∑
q

[1 − f(Eq1)]Φ(−tq).

As a result of our way of decoupling, we have in the sums
f(Eq1) → f(Eq1) − 1/2, and the DOS of the interacting
system remains symmetric.

To obtain the self-consistent (SC) approximation we
replace in (10) the Hubbard-I inverse locators by the exact
ones,

G0
q(E) =

1
F0(E) − tq

→ Gq(E) =
1

F (E) − tq
,

and the Fermi functions fq by the exact occupation num-
bers nq, according to the spectral representation,

nq = − 1
π

∫
dEf(E)�Gq(E).

Then we have the SC equation for the one-electron Green’s
function in the form (12) with

a(E) = 1 +
3
4

U2

E2

∑
q

tqGq(E) +
2U

E

∑
q

tqGq(E)nq,

(14a)

b(E) = F0(E) +
2U

E

∑
q

t2qGq(E)nq. (14b)
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Table 1. Critical values of metal-insulator transition for different bare DOS forms in the Hubbard-III approximation, UH
c ,

“linearized” DMFT, UL
c , and NSC and SC approximations (13) and (14), UNSC

c and USC
c .

DOS UH
c /W UL

c /W UNSC
c /W USC

c /W

rectangular 1 1.73 0.99 1.22

semielliptic
√

3/2 = 0.866 1.5 0.87 1.06

Gaussian
√

3/2 = 0.866 1.5 0.87 1.06

square 0.866 1.5 0.87 1.06

simple cubic 0.707 1.22 0.76 0.99

bcc 0.612 1.06 0.67 0.92
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Fig. 1. Density of states for the semielliptic DOS (a) approximation (13), (b) SC approximation (14).

The approximation (14), as well as the standard
Hubbard-III approximation, does not result in a violation
of analytical properties of the Green’s functions. Note that
such a drawback is present for the simplest self-consistency
scheme considered in reference [8] [see Eq. (32) of that pa-
per], which does not use the locator representation.

3 Results and discussion

To investigate the MIT problem, we calculate the single-
particle density of states

N(E) = − 1
π
�

∑
k

Gk(E).

The results for the approximations (13) and (14) are
shown in Figures 1–4, and the critical values for MIT are

given in Table 1. The numerical calculations were per-
formed for the square and two cubic lattices with a sym-
metric bare DOS. We also treat the Bethe lattice, i.e., the
model semielliptic bare conduction band with

N(E) =
4

πW

√
1 −

(2E

W

)2

,

(W is the bare bandwidth), the rectangular DOS, and the
Gaussian DOS

N(E) =
4√

2πW
exp

(
− 2

(2E

W

)2)

which corresponds to the hypercubic lattice in the large-
d limit. The Gaussian DOS does not have band edges, so
that the parameter W is determined from the second DOS
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Fig. 2. Density of states for the Gaussian DOS (a) approximation (13), (b) SC approximation (14).
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Fig. 3. Density of states for the square lattice (a) approximation (13), (b) SC approximation (14).
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Fig. 4. Density of states for the simple cubic lattice (a) approximation (13), (b) SC approximation (14).

Table 2. Critical values for the metal-insulator transition for the Bethe lattice, UB
c1, 2, and for the hypercubic lattice in the

large-d case, UG
c1, 2, from different works.

UB
c1/W UB

c2/W UG
c1/W UG

c2/W Refs. Method

1.202 [14] QMC

1.24 [15] QMC

1.308 1.591 1.273 1.662 [16] MFT, IPT

1.273 [21] QMC

1.3 1.64 [5] MFT, QMC

1.25 [6] QMC

1.25 1.47 1.15 1.45 [22,19] DMFT, NRG, IPT

1.195 1.47 [17] NRG

0.67 [7] improved Hubbard III

Note: PT is Perturbation Theory, IPT is Iterated Perturbation Theory, NRG is Numerical Renormalization Group.

moment,

W = 4
√

µ2, µ2 =
∫

E2N(E)dE.

Then the quantity µ2 has equal expressions in terms of W
for the Gaussian and semielliptic bare DOS’s.

It is important that the quantity F (E), unlike F0(E),
does not diverge at E → 0, i.e., in the centre of the band.
This fact is just due to many-electron corrections. There-
fore the non-self-consistent (NSC) formulas (13) yield
a metal-insulator transition at U �= 0, unlike NSC lo-
cal approximations. However, the corresponding critical
value UNSC

c is rather small. The “false” singularities at
the edges of the Hubbard-I bands occur for large U in our
NSC approximation (see the discussion in Ref. [8]).

The critical value for MIT in the standard Hubbard-III
approximation [2] for an arbitrary bare DOS is given by [9]

UH
c = 2

√
3µ2. (15)

The critical value in the SC approximation (14) is changed
somewhat in comparison with the Hubbard-III result (see
Tab. 1). Unlike reference [7], where the critical value was
decreased by fluctuations, Uc/W = 0.67 for the Bethe lat-
tice, our approach yields an opposite tendency, in agree-
ment with the results of the QMC calculations at finite
temperatures, Uc/W 	 1 (see Tab. 2). Within the “lin-
earized” DMFT [13], an analytical expression Uc can be
obtained, which exceeds the Hubbard-III value,

UL
c =

√
3UH

c = 6
√

µ2. (16)
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As follows from comparison with Table 2, this approxima-
tion seems to overestimate somewhat Uc.

The account of the Fermi excitations results in a modi-
fication of the DOS form (cf. Ref. [9]). In comparison with
the Hubbard-III approximation, a pronounced pseudogap
exists near MIT at U < Uc. The same feature can be
seen from the results of reference [7]. At small U , a three-
peak structure can be seen in Figures 1–4, which becomes
smeared with approaching MIT (the central peak becomes
wide, and a pseudogap occurs). The three-peak structure
is more pronounced in the NSC approximation. Note that
a pseudogap develops in the metallic phase near MIT in
our picture, as well as in a number of other approaches
(see, e.g., Refs. [14,15]). The details of our MIT scenario
differ from the DMFT picture where the central quasipar-
ticle peak is expected to shrink gradually at U → Uc − 0.
Probably, this discrepancy is connected with the overes-
timation of the role of the damping in our approach. A
consistent treatment of the damping is a difficult problem,
so that early DMFT calculations were performed at low
temperatures; approximate solvers such as iterated pertur-
bation theory (IPT) do not also deal correctly with this
aspect [16]. On the other hand, NRG calculations demon-
strate that DMFT does yield damping at T → 0 [17].

In the case of square lattice the situation is more com-
plicated than for the Bethe lattice owing to the Van Hove
singularity at the band centre. The underestimation of Uc

in the Hubbard-III approximation is confirmed by the cal-
culations of reference [18] where Uc 	 1.5W . More weak
Van Hove singularities are present for cubic lattices. One
can see from Table 1 that the difference between our cal-
culations and Hubbard-III results becomes rather strong
for these lattices.

In the metallic phase, the electron self-energy Σ(E) =
E−F (E) demonstrates in our theory the standard Fermi-
liquid behavior: 
Σ(E → 0) ∝ E, �Σ(E → 0) ∝ E2

(Fig. 5); note that a consistent account of spin dynamics
may be important for details of this behavior. The cor-
responding U -dependence of the quasiparticle weight (the
Green’s function residue),

Z =
(

1 − ∂
Σ(E)
∂E

∣∣∣∣
E=0

)−1

, (17)

is shown in Figure 6. This quantity vanishes at U → Uc,
i.e., at closing the energy gap.

As confirm modern calculations, especially in the
framework of the DMFT approach, two phase transi-
tions with increasing U take place at very low temper-
atures [16,19]. The first transition corresponds to the first
critical value, Uc1, at which the gap closes and the other
one at a higher coupling, Uc2, at which the metallic so-
lution disappears (i.e., the quasiparticle weight vanishes).
Rather accurate values of both Uc1 and Uc2 for hypercu-
bic and Bethe lattices were determined by recent methods,
in particular by NRG method [13,16,17,19] (see Tab. 2).
Since our consideration does not describe properly low-
temperature behavior, we do not treat this problem in
detail. Thus the metal-insulator transition in our theory
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Fig. 5. Energy dependence of the electron self-energy Σ(E)
near the Fermi level (real part: solid line, imaginary part:
dashed line) in SC approximation for the semielliptic bare DOS
(a) U/W = 1.25 > Uc/W (insulator phase), (b) U/W = 0.25 <
Uc/W (metallic phase).
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(as well as in classical MIT considerations in the Hubbard
model) should be compared to that associated with Uc1.

It should be stressed once more that the picture con-
sidered corresponds to MIT in a paramagnetic phase. On
the other hand, in the ground antiferromagnetic state the
half-filled Hubbard model on a square, simple cubic and
bcc lattices is an insulator for arbitrarily small U (see,
e.g., Ref. [20]). Such an instability occurs because of the
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nesting condition for the electron spectrum (tk+Q = −tk
with Q = (π, π, π)). However, the corresponding energy
gap is exponentially small, so that such effects can be ne-
glected at not too low temperatures.

To conclude, we have demonstrated that a simple de-
coupling scheme enables one to reproduce the non-trivial
spectrum structure in the half-filled Hubbard model. Our
approach yields a qualitative agreement with the results
of large-d approaches and QMC calculations. At the same
time, this can be easily applied for arbitrary two- and
three-dimensional lattices. In principle, the many-electron
Hubbard operator method enables one to consider in a
regular way the problem of electron structure of systems
with the Hubbard splitting. Various types of slave boson
and fermion representations combined with diagram tech-
niques can be used to this end.

Since our approach starts from Hubbard’s subbands
and includes large incoherent contributions, this does not
reproduce properly the Fermi-liquid (FL) description of
quasiparticle states. An account of low-energy spin and
charge dynamics would be useful to describe the electron
spectrum picture in more detail. A possibility of a tran-
sition from FL to non-FL behavior which can take place
near MIT (the existence of the second phase transition)
should be also taken into account.
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